Quantum Mechanics Goodies

This page is for various random notes and subject to change.

Some Basic QM Axioms

  1. The quantum state vector, Ψ (psi), embodies the complete state of the system.

  2. Observables are operators. (Typically, square Hermitian matrices.)

  3. The expectation value of a measurement is the mean of possible outcomes.

  4. The Born Rule rules. Probability is the squared amplitude.

  5. A quantum state evolves deterministically via the Schrödinger or Dirac equation.

  6. The eigen equation. Operator × State = EigenValue × State

For Axioms #3 and #4:

\({P}(\lambda_{n})=\left|\langle{U}_{n}|\Psi\rangle\right|^{2}\)

For Axiom #6:

\(\hat{A}|{U}_{n}\rangle=\lambda_{n}|{U}_{n}\rangle\)

The Schrödinger Equation

Its basic form:

\({i}\hbar\frac{d}{dt}|\Psi(t)\rangle=\hat{H}|\Psi(t)\rangle\)

Where Ĥ is the Hamiltonian for the quantum system in question.

For a one-dimensional free particle:

\({i}\hbar\frac{\partial}{\partial{t}}\,\Psi(x,\!t)=\!\left[\!-\frac{\hbar^2}{2m}\,\frac{\partial^2}{\partial{x}^2}+\!V(x,\!t)\right]\Psi(x,\!t)\)

Where V(x, t) defines the potential energy due to the environment.

The Bloch Sphere

Quantum Qubit States

The main basis states of a qubit:

\(|{0}\rangle=|{+Z}\rangle=\begin{bmatrix}{1}\\{0}\end{bmatrix},\quad|{1}\rangle=|{-Z}\rangle=\begin{bmatrix}{0}\\{1}\end{bmatrix}\)

These give us four superpositions (which can also be basis states):

\(|{+}\rangle=|{+Y}\rangle=\,\frac{1}{\sqrt{2}}\left(|{0}\rangle+|{1}\rangle\right)\,=\,\frac{1}{\sqrt{2}}\begin{bmatrix}{1}\\{1}\end{bmatrix}\)

And:

\(|{-}\rangle=|{-Y}\rangle=\,\frac{1}{\sqrt{2}}\left(|{0}\rangle-|{1}\rangle\right)\,=\,\frac{1}{\sqrt{2}}\begin{bmatrix}{1}\\{-1}\end{bmatrix}\)

Plus:

\(|{+i}\rangle=|{+X}\rangle=\,\frac{1}{\sqrt{2}}\left(|{0}\rangle+{i}|{1}\rangle\right)\,=\,\frac{1}{\sqrt{2}}\begin{bmatrix}{1}\\{i}\end{bmatrix}\)

And:

\(|{-i}\rangle=|{-X}\rangle=\,\frac{1}{\sqrt{2}}\left(|{0}\rangle-{i}|{1}\rangle\right)\,=\,\frac{1}{\sqrt{2}}\begin{bmatrix}{1}\\{-i}\end{bmatrix}\)

The Pauli Spin Matrices

\(\sigma_{x}=\frac{\hbar}{2}\begin{bmatrix}{0}&{1}\\{1}&{0}\end{bmatrix},\;\;\sigma_{y}=\frac{\hbar}{2}\begin{bmatrix}{0}&{-i}\\{i}&{0}\end{bmatrix},\;\;\sigma_{z}=\frac{\hbar}{2}\begin{bmatrix}{1}&{1}\\{1}&{1-}\end{bmatrix}\)

These act as operators on the spin state.

(…more to come…)